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Abstract

This paper takes a step forward in image and video
coding by extending the well-known Vector of Locally Ag-
gregated Descriptors (VLAD) onto an extensive space of
curved Riemannian manifolds. We provide a comprehen-
sive mathematical framework that formulates the aggrega-
tion problem of such manifold data into an elegant solu-
tion. In particular, we consider structured descriptors from
visual data, namely Region Covariance Descriptors and
linear subspaces that reside on the manifold of Symmet-
ric Positive Definite matrices and the Grassmannian mani-
folds, respectively. Through rigorous experimental valida-
tion, we demonstrate the superior performance of this novel
Riemannian VLAD descriptor on several visual classifica-
tion tasks including video-based face recognition, dynamic
scene recognition, and head pose classification.

1. Introduction
This paper extends the Vector of Locally Aggregated De-

scriptors (VLAD) [27] to general class of curved Rieman-
nian manifolds, hence adding a novel dimension to the ap-
plicability of VLAD in tackling fundamental recognition
problems in computer vision.

Our motivation stems from the fact that, in Rn, cod-
ing local image or video descriptors using VLAD has been
shown to be exceptionally successful in addressing a variety
of challenging problems, such as image retrieval [27, 17],
texture classification [9], and scene recognition [17]. The
advantage of VLAD can be even more appreciated by not-
ing that its high discriminatory power is achieved using
rudimentary vector subtraction and addition operations, a
negligible computational cost compared to more involved
approaches like deep convolutional networks.

To put the discussion into perspective, describing im-
ages or videos by local descriptors is preferable to holis-
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tic representations when, for instance, the recognition prob-
lem pertains large intra-class variations, articulated shapes,
self-occlusions, and changing backgrounds, to name a few.
However, almost all previous studies [27, 41, 50, 17, 9]
that extracted local descriptors in the form of vectors dis-
regarded the underlying intrinsic manifold structures, prob-
ably because proven and general techniques to aggregate
non-vectorized structures are scarce.

On a related note, structured representations such as Re-
gion Covariance Descriptors (RCovD) and linear subspaces
have been shown to provide robust and efficient representa-
tions for a wide range of tasks [22, 11, 51, 12, 46, 48, 49].
Therefore, a curious mind might inquire

• can we extract structured descriptors from visual data
and then aggregate them in a fashion similar to VLAD
to obtain more discriminating representations?

• is there any mathematical framework that helps us for-
mulate the aggregation problem into an elegant yet
general and accurate solution?

This paper provides answers to the aforementioned ques-
tions by introducing the Riemannian version of the conven-
tional VLAD, called R-VLAD, a new coding approach that
enables fusing local descriptors on curved spaces.

More specifically, we present a universal framework for
constructing a rich representation out of local image or
video descriptors where each local descriptor is indeed a
point on a Riemannian manifold. The conventional VLAD
algorithm can hence be considered as a special case of our
Riemannian formulation when the manifold is chosen to be
the Euclidean space.

We then turn our attention to two widely utilized Rie-
mannian manifolds in vision, namely the manifold of Sym-
metric Positive Definite matrices (SPD) and the manifold
of linear subspaces, known as the Grassmannian manifold.
To this end, we develop the sister family of R-VLAD by ex-
ploiting other forms of metrics defined on SPD matrices and
Grassmannian manifolds. In particular, we make use of the
Stein [43] and Jeffrey [52] divergences on SPD matrices and



the projection distance [20] on Grassmannian manifolds to
yield computationally more efficient versions of R-VLAD.

Our experiments demonstrate the superiority of the pro-
posed R-VLAD descriptor against several baseline and
state-of-the-art methods such as the Weighted ARray of
COvariances (WARCO) of Tosato et al. [46] for head
pose classification, the Adaptive Deep Network Template
(ADNT) of Hayat et al. [23] for video-based face classi-
fication, and the Bag of Spatiotemporal Energy (BoSE) of
Feichtenhofer et al. [13] for dynamic scene recognition .

To the best of our knowledge, using the standard pro-
tocol, the proposed R-VLAD achieves top results on stan-
dard benchmarks: 85% for HOCoffe [46], 79.1% for
HDM05 [32], 79.9% for YouTube Celebrities [28], 97.6%
for Dyntex++ [14], and 99.8% for UPENN [10].

2. Related Work
Since the late nineties, Bag of Words (BoW) [40, 18, 30,

42] and its extensions [29, 19] have been the de facto driv-
ing force for image and video representation. Two notable
examples are Video Google [42] for object matching in
videos and Spatio-temporal Pyramid Matching (SPM) [29]
for scene classification.

Broadly speaking, the local models such as BoW, Fisher
Vectors (FV) [37], and VLAD [27] can benefit from power-
ful local feature descriptors (e.g. SIFT [31]), which to some
extent provide robustness to transformations such as scal-
ing, translation, and occlusion. Furthermore, the resulting
vector can be compared using the Euclidean distance norms
and utilized [36] in conventional classifiers (e.g. Support
Vector Machines (SVM)).

The VLAD descriptor, our main focus in this work, is a
coding scheme similar in spirit to the earlier FV [37]. It is
able to provide compact codes by capturing certain aspects
of the distribution of features. While inheriting the useful
properties of BoW, VLAD departs from it as it encodes the
differences from the cluster centers rather than counting the
number of assignments to them.

Several recent studies [26, 7, 2] suggest that promis-
ing performances on various benchmarks can be attained
by effective use of the original VLAD descriptor. For ex-
ample, Gong et al. proposed to exploit VLAD to pool the
activations of Deep Convolutional Neural Networks. Im-
pressively, the results of multi-scale VLAD reported in [17]
outperformed various state-of-the-art methods. One exam-
ple is the scene classification on the MIT dataset, where
the multi-scale VLAD with only 4096 features comfortably
outperformed the mixture of FV and bag-of-parts, which
used 221,550 features for its decision [17]. Another ex-
ample is the work of Cimpoi et al. who showed that the
VLAD descriptor is preferable to others for the task of tex-
ture recognition [9]. Some other recent advances include
better normalization schemes for the VLAD descriptor [2],

supervised codebook learning for VLAD [34], VLAD with
higher order statistics [34], and VLAD for action recogni-
tion [25].

3. Riemannian VLAD
In this section, we derive a general formulation for Rie-

mannian VLAD. In doing so, we start by studying the con-
ventional VLAD formulation, and in particular through its
predecessor, the Fisher Vector (FV) [37].

3.1. Conventional VLAD in Euclidean Spaces

Given a set of local descriptors X = {xt}mt=1,xt ∈ Rd
extracted from an image or video, let us assume that X ad-
mits a probability density function in the form of a Gaussian
Mixture Model (GMM)

p(xt|λ) =

K∑
i=1

ωiN (xt|µi,Σi) ,

with λ = {ωi,µi,Σi} being the mixture weight, mean and
covariance of the Gaussian components, respectively.

In the FV method, X is encoded through its score func-
tion1. Related to VLAD is the gradient part with respect to
µi which has the following form

∇µi
log p(X|λ) =

m∑
t=1

γi(xt)Σ
−1
i (µi − xt) , (1)

where γi(xt) is the soft-assignment of xt to the i-th Gaus-
sian component, i.e.,

γi(xt) =
ωiN (xt| µi,Σi)∑K
j=1 ωjN (xt| µj ,Σj)

.

In VLAD, the input space Rd is partitioned into K
Voronoi cells by means of a codebook C with centers
{ci}Ki=1, ci ∈ Rd. For the aforementioned query set X ,
the VLAD code V ∈ RKd is obtained by concatenating K
Local Difference Vectors (LDV) vi storing the differences
ci − xt in each cell, i.e.,

vi =
∑
xt∈ci

ci − xt , (2)

where x ∈ ci means that the local descriptor x belongs to
the Voronoi defined by ci, i.e., the closest codeword to x is
ci.

Direct comparison between Eq. (1) and Eq. (2) reveals
the following about VLAD

1. In contrast to FV which uses soft assignment of local
descriptors to the Gaussians, VLAD exploits a hard as-
signment scheme.

2. Unlike FV, the covariance matrices of the mixture
components with VLAD are assumed to be diagonal
and fixed, i.e., Σi = σId, ∀i ∈ {1, 2, · · · ,K}.

1In statistics, the score function is the gradient of the log-likelihood of
the data on the model.



The take-home message here is that the LDV is in-
deed the gradient of the Euclidean distance2 and the VLAD
framework is a clever simplification of the FV algorithm.
With this introduction, we are now ready to introduce Rie-
mannian VLAD (R-VLAD).

3.2. Extension to Riemannian Manifolds

Now let us assume that X = {xt}mt=1, xt ∈ M and
C = {ck}Kk=1, ck ∈ M, are a set of local descriptors (ex-
tracted from a query image or video) and codewords on a
Riemannian manifold M, respectively. The R-VLAD de-
scriptor onM is obtained once we have the followings tools
at our disposal

• a metric δ(x,y) : M×M → R+ required to deter-
mine how the local descriptors should be assigned to
the codewords.

• operators to perform the role of vector addition or sub-
traction onM.

Since a Riemannian manifold is a metric space, one
could seamlessly use the geodesic distance δg :M×M→
R+ to address the first requirement. As for the second re-
quirement, we note that on a Riemannian manifold, one
can see a vector

−→
ab (attached at point a) as a vector of the

tangent space at a, i.e. TaM. Therefore, subtraction on a
Riemannian manifold can be attained through the logarithm
map, loga(·) : M → TaM3. This concept has been used
widely in the literature. For example, vector subtraction
through the logarithm map was used to address the prob-
lem of interpolation and filtering [35], sparse coding [24],
and dimensionality reduction [15], to name a few.

The aforementioned discussion hints towards devising
the R-VLAD as follows

• exploit the geodesic distance to determine the closest
local descriptors to each codeword.

• build a Riemannian LDV per codeword using the tan-
gent space attached to each codeword on the manifold.

Since the pole of the tangent space, i.e., ci is fixed, the
outputs of the logarithm map are compatible with each other
and no further special care (e.g., parallel transport) is re-
quired4. Therefore, Eq. (2) on a curved Riemannian mani-
fold boils down to

vi =
∑
xt∈ci

logci
(xt) . (3)

2To be more precise, the gradient of a Gaussian function where the
associated normalization terms are discarded.

3Due to the lack of space, we skip rigorous definition of tangent vectors,
logarithm map and other concepts of Riemannian geometry. The interested
reader is referred to textbooks on Riemannian geometry for a formal treat-
ment.

4To be precise, this argument is valid as long as xt is not in the cut
locus of ci. This is of course not a very restricting assumption as in many
manifolds (e.g., the SPD manifold) the cut locus is indeed empty.

While being perfectly valid, for reasons that become
clear later, we are interested in having a more general for-
mulation for R-VLAD. More specifically, rather than hav-
ing a method that only works with the geodesic distance,
we would like to extend our formulation such that any met-
ric onM can be used.

Obviously, for a new metric δ :M×M→ R+, we need
to only take care of the second requirement. Since the LDV
can be understood as the gradient of the distance function
in the Euclidean case (see § 3.1), it is tempting to define
the LDV onM as ∇ci

δ2(ci,xt)
5. The following theorem

reinforces this idea even more.

Theorem 1. For a Riemannian manifold M, the gradient
of the geodesic distance function, δg : M×M → R+ is
given by

∇xδ
2
g(x,y) = −2 logx(y). (4)

Proof. The interested reader is referred to [45] for the proof
of this theorem.

Unfortunately, choosing∇ciδ
2(ci,xt) for LDV will not

work in practice. The main reason being that for δg , the
norm of∇xδ

2
g(x,y) is related directly to the metric, i.e.,

‖∇xδ
2
g(x,y)‖2 = 4‖ logx(y)‖2 = 4δ2g(x,y).

This is of course inherited to the Euclidean space when
the metric is chosen to be the geodesic distance, i.e., the Eu-
clidean distance. However, this will not generalize to other
metrics as shown by the following example.

Example 1. Fig. 1 shows the behavior of∇Xδ
2(X,Y ) by

varying δ2(X,Y ) for the projection metric on the Grass-
mann manifold G23 (see § 5 for the equations). Interestingly,
the norm of the gradient will start decreasing while point
Y gets farther away fromX . This means, during encoding,
a point which should contribute significantly to the output,
can act as an insignificant point, hence deteriorating the
discriminatory power of the descriptor.

The aforementioned example provides us with the fol-
lowing guideline for constructing an LDV onM.

• the length of the LDV should represent the metric con-
sidered onM.

As such, we propose the following form of LDV for our
general R-VLAD descriptor (see Algorithm 1 for a step-by-
step on the R-VLAD technique).

vi =
∑
xt∈ci

δ(ci,xt)
∇ci

δ2(ci,xt)

‖∇ci
δ2(ci,xt)‖

. (5)

5On an abstract Riemannian manifoldM, the gradient of a smooth real
function f at a point x ∈ M, denoted by ∇xf , is the element of TxM
satisfying 〈gradf(x), ζ〉x = Dfx[ζ] for all ζ ∈ TxM, where Dfx[ζ]
denotes the directional derivative of f at x in the direction of ζ.
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Figure 1: Illustration of the squared norm of the gradients vs distance for
the projection distance on G23 .

Algorithm 1 The proposed R-VLAD algorithm
Input:

• local descriptors X = {xt}mt=1,xt ∈ M, extracted from a
query image or video,

• codebook C = {ck}Kk=1 , ck ∈M
Output:

• V (X ) the Riemannian VLAD representation of X
1: for i = 1→ k do
2: Find xt ∈ ci, all nearest query points from X to ci
3: Compute vi, i-th Local Difference Vector (LDV), using Eq. (5)
4: end for
5: Concatenate the resulting LDVs to form the final descriptor, i.e.,

V (X ) =
[
vT
1 ,v

T
2 , · · · ,vT

k

]T

Remark 1. In line with the recommendations in [38],
post-processing of VLAD codes could increase the dis-
criminatory power of the codes. In practice, we normal-
ize the R-VLAD codes in two steps. First, an element-
wise power normalization is performed using the transfer
function y : R → R, y(x) = sign(x)

√
|x|, where x is the

element of VLAD vector and | · | denotes absolute value.
This is to avoid having a concentrated distribution around
zero. The power normalization is followed by an `2 nor-
malization to make the energy of descriptors uniform.

In the following sections, we develop the R-VLAD for
two widely used manifolds in vision, i.e., the SPD and the
Grassmannian manifolds (see Table 1 for a quick peak at
the studied metrics and the associated gradients as required
by Eq. (5)). Before concluding this section and for the sake
of completeness, we discuss how a Riemannian codebook
can be learned from training samples.

3.3. k-Means on Riemannian Manifolds

Given an abstract manifoldM with an associated metric
δ :M×M→ R+, we train a codebook similar to standard
k-means using an EM-based approach. The algorithm starts
by selecting k points from the training data randomly as the
cluster centers. In the E-step, each of the points are assigned

to the nearest cluster center using δ. Then in the M-step, the
cluster centers are re-computed using the Fréchet mean.

Definition 1. The Fréchet mean for a set of points
{xi}mi=1 , xi ∈M is local minimizer of the cost function

c∗ = arg min
c

m∑
i=1

δ2(c,xi) . (6)

In general, an analytic solution for Eq. (6) cannot be
sought and iterative schemes that exploit the logarithm and
exponential maps must be employed [35]. This, for a high-
dimensional manifold with a big m, could easily become
overwhelming. One reason in generalizing the R-VLAD
to work with an arbitrary metric comes from the fact that,
unlike the general case, for some metrics Eq. (6) has an an-
alytic solution. We will provide more details on how Eq. (6)
can be solved for the special cases of interest in this paper
later.

4. R-VLAD on SPD Manifold
The space of d× d SPD matrices is mostly studied when

endowed with a Riemannian metric and thus forming a Rie-
mannian manifold [35]. The Affine Invariant Riemannian
Metric (AIRM) is probably the most popular Riemannian
structure for analyzing SPD matrices [35].

Definition 2. The geodesic distance δg : Sd++ × Sd++ →
[0,∞) induced by the AIRM is defined as

δg(X,Y ) = ‖ log(X−1/2Y X−1/2)‖F , (7)
where log(·) is the matrix principal logarithm.

Beside the AIRM, two types of Bregman divergences,
namely the Jeffrey [52] and Stein [43] are widely used to
measure similarities on SPD manifolds.

Definition 3. The J divergence (also known as Jeffrey or
symmetric KL divergence) δJ : Sd++ × Sd++ → [0,∞) is a
symmetric type of Bregman divergence and is defined as

δ2J(X,Y ) ,
1

2
Tr(X−1Y ) +

1

2
Tr(Y −1X)− d . (8)

Definition 4. The Stein metric δS : Sd++×Sd++ → [0,∞) is
also a symmetric type of Bregman divergence and is defined
as

δ2S(X,Y ) , ln det

(
X + Y

2

)
− 1

2
ln det(XY ) . (9)

As for the δg , the Fréchet mean is obtained using an iter-
ative approach [35]. The same holds for the Stein metric as
a result of the following theorem.

Theorem 2. The Fréchet mean of a set of SPD matrices
{Xi}mi=1 ∈ Sd++ with δS is obtained iteratively via

µ(t+1) =

[
1

m

m∑
i=1

(Xi + µ(t)

2

)−1]−1
. (10)



Table 1: Metrics and associated gradients on the SPD and Grassmannian manifold.

Manifold Metric δ2(X,Y ) ∇Xδ
2

Sd
++ geodesic ‖ log(X−1/2Y X−1/2)‖2F 2X1/2 log(X−1/2Y X−1/2)X1/2

Sd
++ Stein ln det

(
X+Y

2

)
− 1

2
ln det(XY ) X(X + Y )−1X − 1

2
X

Sd
++ Jeffrey 1

2
Tr(X−1Y ) + 1

2
Tr(Y −1X)− d 1

2
X

(
Y −1 −X−1Y X−1

)
X

Gpd geodesic ‖Θ‖2 No analytic form
Gpd projection 2p− 2‖XTY ‖2F −4

(
Id −XXT

)
Y Y TX

Proof. See [8] for the proof.

However, with the Jeffrey divergence, we have the lux-
ury of obtaining the Fréchet mean analytically.

Theorem 3. The Fréchet mean of a set of SPD matrices
{Xi}mi=1 ∈ Sd++ with δJ is

µ = P−1/2(P 1/2QP 1/2)1/2P−1/2 , (11)
where P =

∑
iX
−1
i andQ =

∑
iXi.

Proof. The solution is obtained by zeroing out the deriva-
tive of

∑m
i δ

2
J(Xi,µ) with respect to µ. The proof is rele-

gated to the supplementary material.

The gradient of a function f : Sd++ → R at X has the
following form on Sd++ [44]

∇Xf = Xsym(Df)X, (12)
where sym(X) = 0.5(X +XT ) and Df is the derivative
of the function f : Rd×d → R with respect toX .

The derivatives of Dδ2S and Dδ2J are reported in [8]6.
From [8] we can deduce the gradients required in the R-
VLAD algorithm as depicted in Table 1.

Computational Cost
The computational loads of computing δ2g , δ2J and δ2S are
4d3, 8/3d3 and d3, respectively [8]. Computing the gradi-
ent of δ2g requires an eigenvalue decomposition (for com-
puting principal matrix logarithm) which adds up to a total
of 9d3 flops for δ2g (considering the matrix multiplications).
For δ2J and δ2S , computing gradient just requires a matrix
inversion which is O(d3). As such, the computational load
of R-VLAD using δ2J and δ2S is O(17/3d3) and O(4d3), re-
spectively.

5. R-VLAD on Grassmannian
The space of p-dimensional linear subspaces of Rd for

0 < p < d is not a Euclidean space, but a Riemannian
manifold known as the Grassmannian Gdp [1]. A point on the
Grassmann manifold Gpd may be represented by an arbitrary

6Note that in Table 3 of [8] a scalar factor of 0.5 is wrongly dropped
from the Jeffrey divergence (KLDM according to [8]). Also please note
that the gradient reported in [8] is the Euclidean gradient not the Rieman-
nian as required here.

d × p matrix with orthogonal columns, i.e., X ∈ Gdp ⇒
XTX = Ip

7. For the Grassmannian, the geodesic distance
between two pointsX and Y is given by

δg(X,Y ) = ‖Θ‖2 , (13)
where Θ is the vector of principal angles between X and
Y [1].

In addition to the geodesic distance, a popular metric on
Gpd is the projection metric δP : Gpd × G

p
d → R+ defined

as [22, 20]
δ2P (X,Y ) = ‖XXT − Y Y T ‖2F , (14)

where ‖ · ‖F denotes the Frobenius norm. Unlike δg
which does not have an analytic form for the Fréchet mean
(see [47] for more details), the projection metric has the fol-
lowing interesting property.

Theorem 4 (Closed-Form Mean). The Fréchet mean for a
set of points

{
Xi

}m
i=1

, Xi ∈ Gpd based on δP admits a
closed-form solution. That is the p largest eigenvectors of∑m
i=1XiX

T
i .

Proof. The solution is obtained by maximizing
Tr{µT

(∑m
i=1XiX

T
i

)
µ} and considering the or-

thogonality constraint µTµ = Ip. The proof is relegated to
the supplementary material due to the lack of space.

The gradient of a function on Grassmannian, i.e., f :
Gpd → R has the form

∇Xf =
(
Id −XXT

)
Df, (15)

where Df is a d × p matrix of partial derivatives of f with
respect to the elements ofX , i.e.,

Dfi,j =
∂f

∂Xi,j
.

The logarithm map (and also the exponential map) on
Grassmannian does not have an analytic form. However,
numerical methods for computing both mappings do ex-
ist. In particular, we will use the formulation introduced
in [5] to compute R-VLAD using the geodesic distance.

7A point on the Grassmannian Gpd is a subspace spanned by the
columns of a d × p full rank matrix and should therefore be denoted by
span(X). With a slight abuse of notation, here we call X a Grassmannian
point whenever it represents a basis for a subspace.



As for the projection metric, using Eq. (15) and noting that
δ2P (X,Y ) = 2p − 2‖XTY ‖2F leads to the following ana-
lytic form for the gradient as required in Eq. (5)

∇Xδ
2
P (X,Y ) = −4

(
Id −XXT

)
Y Y TX. (16)

Computational Cost
The computational load of coding in R-VLAD is dictated
by the complexity of the used metric δ2 and its gradient.
On top of this, one should pay attention to the complex-
ity of Riemannian k-means. As long as the complexity of
coding is considered, we note that δ2g on Grassmannian is
obtained through SVD decomposition. As such, computing
δ2g requires dp2+p3 flops on Gpd . In contrast, the complexity
of computing δ2P on Gpd is dp2.

Computing the gradient of δ2g (or logarithm map) using a
very efficient implementation requires a matrix inversion of
size p × p, two matrix multiplications of size d × p, and a
thin SVD of size d× p. Computing thin SVD using a stable
algorithm like the Golub-Reinsch [16] requires 14dp2+8p3

flops. This adds up to a total of O
(
10p3 + 17dp2

)
flops

for one local descriptor. As for δ2p, computing the gradient
according to the Table 1 demands for 4dp2 operations. This
results in a total of 5dp2 flops for the projection metric.

To give the reader a better sense on the computational
complexity of R-VLAD using δ2g and δ2P , we measured the
coding time for 1000 videos each with its own set of local
descriptors on G6177 (this is an example of the Grassman-
nian we will use in our experiments later). On a quad-core
machine using Matlab, coding time for δ2P and δ2g were ob-
served to be around 155 and 440 seconds, respectively.

6. Experiments

This section presents comparative evaluation results of
our proposal against the baseline and state-of-the-art for a
number of visual recognition problems defined on the SPD
and Grassmannian manifold. In all our experiments, a set
of overlapping blocks or cubes are extracted from images
or videos. Each block or cube is then represented by an
RCovD or a linear subspace, hence it corresponds to a point
on the SPD or the Grassmannian manifold, respectively.
Different algorithms tested in our experiments are

BoWG: Riemannian BoW model using geodesic distance.
An image or video is described by the histogram of its build-
ing blocks or cubes using geodesic distance. The codebook
is learned by Riemannian k-means algorithm as described
in § 3.3.

BoWLE : BoW model trained by flattening the manifold
through a fixed tangent space. We follow the terminology
introduced in [3] and label this as Log-Euclidean BoW or
for short BoWLE .

VLADLE : Similar in concept to BoWLE but instead of
BoW, we assess the performance of VLAD by flattening the
manifold through a fixed tangent space.

R-VLADG: R-VLAD using geodesic distance.

R-VLADJ/S/P : R-VLAD using the Jeffrey, Stein, or pro-
jection metrics.

Besides the Log-Euclidean and BoWG methods that
serve as baseline methods, we will exclusively consider pre-
vious state-of-the-art algorithms for each studied problem
to demonstrate the power of R-VLAD.

For classification, the VLAD descriptors, either Log-
Euclidean or R-VLAD, are fed to a Nearest Neighbor (NN)
or a linear Support Vector Machine (SVM) [6]. We sepa-
rately report the performances for these two classifiers. In
all the experiments, the size of codebook for VLAD is set
to 16. This value is obtained empirically as a good com-
promise between computational cost and classification ac-
curacy. For the BoWG, we will report the best accuracy by
searching over various codebook sizes.

6.1. SPD Manifold

For tests on the SPD manifold, an image or video is de-
scribed by a set of RCovDs. More specifically, given a
block I(x, y)8 of sizeW×H , let O = {oi}ri=1, oi ∈ Rd be
a set of r observations extracted from I(x, y), e.g., oi con-
catenates intensity values, gradients, filter responses, etc.
for image pixel i. Then, block I can be represented by the
d× d RCovD using

CI =
1

r − 1

r∑
i=1

(oi − o) (oi − o)
T
, (17)

where o = 1
r

∑r
i=1 oi.

Head Pose Classification:
As our first experiment, we study the problem of head
pose (orientation) classification. To this end, we utilized
the Heads Of Coffee break (HOCoffee) dataset [46] which
presents outdoor images captured by a head detector for the
purpose of automatically detecting social interactions. This
dataset is composed of 18,117 low-resolution images of size
50×50 pixels. The dataset comes with a predefined test pro-
tocol in which 9522 images are considered as training data
and the remaining 8595 images are used for evaluation.

Similar to [46], we used a Difference Of Offset Gaus-
sian (DOOG) filter-bank along color and image gradients to
describe each image. More specifically, the feature vector
assigned to each pixel in the image is

ox,y =
[
IL(x, y), Ia(x, y), Ib(x, y),

√
I2x + I2y ,

arctan
( |Ix|
|Iy|

)
, G1(x, y), G2(x, y), · · · , G8(x, y)

]
,

8A similar discussion holds for cubes extracted from videos.



Table 2: Recognition accuracies for the HOCoffee [46] and
HDM05 [32] datasets.

Method HOCoffee HDM05
Previous Best 80.8 [46] 73.3 ± 11.4 [21]

BOWG-NN 81.8 65.3 ± 14.1
BOWG-SVM 80.0 71.6 ± 7.7

BOWLE-NN 81.6 50.4 ± 11.2
BOWLE-SVM 78.9 65.9 ± 8.5
VLADLE-NN 82.4 65.4 ± 13.5
VLADLE-SVM 82.4 71.2 ± 10.6

R-VLADG-NN 85.0 78.1 ± 5.8
R-VLADG-SVM 84.3 79.1 ± 7.5
R-VLADS-NN 84.9 72.5 ± 10.1
R-VLADS-SVM 84.2 74.1 ± 5.2
R-VLADJ -NN 84.5 74.3 ± 8.2
R-VLADJ -SVM 83.3 76.5 ± 11.6

where Ic(x, y), c ∈ {L, a, b}, denotes the CIELab color in-
formation at position (x, y), Ix and Iy are luminance deriva-
tives, and Gi(x, y) denotes the response of the i-th DOOG
centered at IL(x, y). Therefore, each local covariance de-
scriptor is on S13++.

In the second column of Table 2, we report the recogni-
tion accuracies of all the studied methods for this dataset.
Several conclusion can be drawn here. First of all, the lo-
cal approach, even the simple BOWG-NN, outperforms the
previous state-of-the-art method. The R-VLAD technique
with all studied metrics achieve the best performances (with
a NN classifer), with R-VLADG being the overall winner in
terms of accuracy. However, the performance of R-VLAD
with the Stein and Jeffrey is on par or slightly worse than
that of the geodesic solution while being at least 27 times
faster in coding and 65 times faster (especially for the case
of Jeffrey) in the training phase. We also observe that the
proposed R-VLAD method is significantly superior as com-
pared to the Log-Euclidean methods, which suggests that
the underlying Riemannian structure is better exploited in
R-VLAD.

Action Recognition from Motion Capture Data:
As our second experiment, we tackled the task of human ac-
tion recognition from the skeletal information. To this end,
we used HDM05 dataset [32], which contains 14 different
human actions performed by 5 subjects.

We followed the protocol of [21] in which only the real-
world location of 4 joints related to arms and legs are uti-
lized for generating RCovDs. Therefore, RCovDs of size
12 × 12, extracted with a temporal overlap of 75% were
used as local descriptors for an action. We used a leave-
one-subject-out protocol, where the data of 4 subjects are
used for training and the remaining one is used for testing.

The average recognition accuracies along the standard

deviations are reported in the last column of Table 2. From
this table we conclude that the R-VLAD equipped with a
linear SVM classifier outperforms the state-of-the-art [21]
regardless of its metric. The maximum accuracy is obtained
by R-VLADG which is nearly 6 percentage points better
than [21]. Furthermore, the R-VLADG is significantly bet-
ter than R-VLADS and R-VLADJ which makes it the pre-
ferred technique if coding time is not an issue.

Moreover, we evaluated the performance of the VLAD in
Euclidean space (VLADE) using very small to large code-
book sizes to obtain signatures with the dimensionality sim-
ilar or greater than that of R-VLAD’s signatures. We ob-
served that R-VLAD is significantly superior to VLADE .
For instance, the best accuracy of VLADE on the HOCoffee
and HDM05 datasets are 79.9% and 69.4%, respectively.

6.2. Grassmannian Manifold

The experiments on the Grassmannian manifolds are de-
signed to tackle the problem of recognition from videos or
image-sets. In this context, a video or an image-set is di-
vided into 3D blocks, followed by describing each block by
a linear subspace through SVD decomposition.

Face Recognition:
As our first experiment on Grassmannian manifolds, we
tackled the task of video-based face recognition. To this
end, we considered the YouTube Celebrity dataset [28]
which contains 1910 videos of 47 people (see Fig. 2 for
examples). The large diversity of poses, illumination, and
facial expressions in addition to high compression ratio of
face images provide a significant challenges in this dataset.

For our evaluation, we followed the setup used in the
method of Adaptive Deep Network Template (ADNT) by
Hayat et al. [23]. More specifically, from each video,
the face regions are extracted using the tracker of Ross et
al. [39]. Then, without any further refinement, each face re-
gion was divided into 4× 4 distinct non-overlapping blocks
and the histogram of Local Binary Patterns (LBP) [33] was
extracted for each patch and concatenated to form the final
frame descriptors.

We note that various evaluation protocols were used by
researchers on this dataset. Here, we use the five-fold cross
validation protocol introduced in [23], which divides the
whole dataset equally (with minimum overlap) into five
folds with 9 videos per subject in each fold. Three of the
videos were randomly selected for training, while the re-
maining six were used for testing.

We generated linear subspaces of order 6 by grouping
features of every 6 consecutive frames. Therefore, each lo-
cal descriptor belongs to G6928. The second column of Ta-
ble 3 summarizes the average recognition rates and the stan-
dard deviations of all the studied methods.

We note that the R-VLAD with both geodesic and pro-
jection metric comfortably outperforms the state-of-the-art



ADNT algorithm. The maximum accuracy of 79.9% is
achieved by R-VLAD using projection metric with a linear
SVM classifier.

Dynamic Texture Classification:
We performed an experiment to classify videos of dynamic
textures using the Dyntex++ dataset [14]. Dynamic tex-
tures are videos of moving scenes (smoke, waves, high
way, forest fire, etc.) that exhibit certain stationarity proper-
ties in time domain. The DynTex++ dataset contains 3600
(50× 50× 50) videos of moving scenes in 36 classes.

To obtain local Grassmannian descriptors, each video is
decomposed into 3D blocks of size 15×15×15 with spatial
(temporal) overlap of 5 pixels (frames). The 3D block was
then described by grouping its internal frames and describ-
ing each with the 3D extension of the Local Binary Pattern
(LBP) [33], namely LBP Three Orthogonal Planes (LBP-
TOP) [53]. For each 3D block and from the LBPTOP fea-
tures, we extracted a subspace of dimension 6 using SVD.
This resulted in having local descriptors on G6177. In total,
we extracted 512 subspaces from each video.

For this experiment, we followed the evaluation protocol
used in [4]. That is, half of the videos of each class were
randomly chosen as training data and the remaining ones
were used as test data. The process of random selection was
repeated 10 times and the average accuracy along standard
deviations are reported in the third column of Table 3.

Table 3 shows that the proposed R-VLAD outperforms
the state-of-the-art by more than 5 percentage points. R-
VLAD with projection metric equipped with a linear SVM
classifier achieves the highest recognition rate of 97.6%.
Compared to Log-Euclidean solutions, again R-VLAD is
preferable though the gap is not as big as that of the previ-
ous experiment.

Dynamic Scene Recognition:
As the last experiment, we considered the task of scene
recognition from the videos using UPenn dataset [10] (see
Fig. 2 for example classes). The UPenn dataset consists
of 420 videos of natural scenes spanning 14 categories. The
videos are obtained from various sources including personal
footage captures and online repositories such as YouTube.
Moreover, significant differences in image resolution and
appearance, frame rate, scale, viewpoint, and illumination
conditions exist in this dataset.

To extract local Grassmannian points, we followed the
setup used in the previous experiment and represented each
video using 6 dimensional subspaces extracted from 15 ×
15 × 15 subblocks (using LBPTOP features). Leave-one-
video-out scenario is the standard evaluation protocol on
this dataset. To the best of our knowledge, the recent Bag
of Spatiotemporal Energy (BoSE) method of Feichtenhofer
et al. [13] has achieved the highest accuracy on this dataset.

The recognition accuracies for all the studied methods

Figure 2: Examples of YouTube celebrity and UPENN datasets.

Table 3: Recognition accuracies for the YouTube Celebrities [28],
Dyntex++ [14], and UPENN [10] datasets.

Method YouTube Dyntex++ UPENN
Previous Best 71.4 ± 5.1 [23] 92.4 [4] 96.2 [13]

BOWG-NN 60.3 ± 5.4 92.0 ± 0.7 81.2
BOWG-SVM 64.5 ± 5.1 92.4 ± 0.5 92.9

BOWLE-NN 50.6 ± 3.9 80.6 ± 0.9 75.2
BOWLE-SVM 55.3 ± 2.9 81.1 ± 0.5 92.6
VLADLE-NN 62.1 ± 1.6 93.1 ± 0.6 86.4
VLADLE-SVM 65.2 ± 2.8 93.3 ± 0.4 96.9

R-VLADG-NN 75.5 ± 3.4 96.4 ± 0.4 90.0
R-VLADG-SVM 75.6 ± 2.5 96.7 ± 0.3 99.5
R-VLADP -NN 78.5 ± 3.6 96.9 ± 0.4 91.2
R-VLADP -SVM 79.9 ± 3.6 97.6 ± 0.4 99.8

are shown in the last column of Table 3. The results are self-
explanatory. The R-VLAD equipped with a linear SVM
classifier achieves the highest accuracy, outperforming the
state-of-the-art by more than 3 percentage points. Notably,
the Log-Euclidean VLAD is performing slightly better than
the state-of-the-art method of Feichtenhofer et al. [13].

7. Main Findings and Future Directions
Inspired by the recent success of compact descriptors

in Euclidean spaces and superior discriminative power of
the descriptors on Riemannian manifolds, in this paper we
proposed R-VLAD, the Riemannian version of the conven-
tional Vector of Locally Aggregated Descriptors (VLAD).
In addition to the comprehensive formulation, we devised
manifold-specific versions of the R-VLAD on the SPD and
Grassmannian. An extensive set of successful experiments
on several challenging vision tasks including action recog-
nition from MoCaP data, face recognition from videos, and
dynamic scene categorization supported our method. Since
our formulation allows us to utilize any metric to construct
VLAD, we plan to investigate how more robust metrics
(e.g., `1) can be employed in conventional VLAD. We are
also interested to extend our framework to other types of
Riemannian structures such as Kendall shape manifolds.
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